
A Paradigm for Grand Challenge
Performance Evaluation

John L. GUSTAFSON

Ames Laboratory, U.S. DOE
Iowa State University, Ames, Iowa

ABSTRACT

The computing community has long faced the problem of scientifically comparing
different computers and different algorithms. This difficulty is especially pronounced for “Grand
Challenge” computing, and the lack of a performance evaluation paradigm has had a negative
effect on the entire HPCC program. Our failure to articulate the goals of some of our Grand
Challenges has raised doubts about the program at the federal level. In this paper, a model is
proposed that shows a practical way to define and communicate ends-based performance of an
application, without the means-based measures such as “teraflops” or “double precision.” Unlike
most performance analysis, we incorporate human issues such as monetary cost and program
development time into the model. Examples are given to illustrate the paradigm.

1. INTRODUCTION

The term “Grand Challenge” was coined by Nobel Laureate Kenneth G. Wilson, who
also articulated the current concept of “computational science” as a third way of doing science.
Posing a scientific effort as a specific challenge like “climate prediction” or “protein folding”
implies an engineering rather than a research approach, and that there is a point at which one can
define success. The Grand Challenge problems have the following in common:

• They are questions to which many scientists and engineers would like to know answers, not
just esoterica.

• They are difficult; we don’t know how to do them right now.
• We think they can be done by computer, but we think current computers are not “powerful”

enough.

So how does one know when a Grand Challenge has been solved? In asking researchers
this question, I find the question met with resistance, even resentment. Perhaps having a firm test
of success means either the effort can be proved unsuccessful (which might mean cessation of
funding) or it might be proved successful (which, ironically, also might mean cessation of fund-
ing). As long as the frontier of a challenge is ill-defined and movable, a Grand Challenge effort
can keep success just out of reach. Can a computational chemist, for instance, define a level of
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physical accuracy and a molecule complexity at which chemists will have nothing more to study?
It seems unlikely that this will happen.

The HPCC program is now under attack because of failure to specify goals. In “HPCC
Research Questioned” [6], Fred Weingarten points out that Congress cast 65 dissenting votes
against extending HPCC, raising such questions as:

• What are the real goals of the HPCC program?
• How can we measure progress toward those goals or lack thereof?

Somehow we need concrete measures of HPCC progress without making HPCC goals as nar-
rowly-defined as those of a moon shot or a superconducting supercollider.

The solution to this, and to future large-scale computational efforts, lies in effective
performance evaluation paradigms. Paradigms such as “A teraflop/s on a real application” are not
effective, for reasons explained below. Neither is “the smaller the execution time, the better” by
itself, since below some amount of time, other things become more important.

2. ENDS VERSUS MEANS: THE FAILURE OF “FLOP/S”

Suppose a track coach, training runners for mile races, decides that faster running implies
more Footsteps Per Second (FSPS). He then makes the even shakier deduction that more FSPS
implies faster running, and that his athletes can shift their goals from winning races to practicing
to maximize FSPS.

The result, obviously, would be absurd. All the coach would achieve would be a collection
of runners taking rapid steps that don’t get them very far. Would higher FSPS ratings on a runner
imply higher speed on actual races? Probably not. In fact, it might correlate inversely. Yet, this
absurdity is exactly what we do when we confuse “flop/s” ratings with scientific goals.

Consider the following example from the NAS Parallel Benchmarks [1]: Four computers
can be ranked from “fastest” to “slowest” by peak gigaflop/s ratings as follows:

System                   Nominal Nominal
                               Gigaflop/s Rank
TMC CM-2 15.0 1
Intel IPSC/860   7.7 2
CRAY Y-MP   2.6 3
nCUBE 2   2.4 4

Using the first of the NAS Parallel Benchmarks (one so forgiving of slow interprocessor
communications that it goes by the name “EP” for “Embarrassingly Parallel”), the ranking goes as
follows for “sustained” gigaflop/s [2]:

Actual Actual Nominal
Rank Gigaflop/s   Rank

1 nCUBE2 2.6 4
2 CRAY Y-MP 1.1 3
3 TMC CM-2 0.44 1
4 Intel IPSC/860 0.36 2

The ranking is almost exactly reversed! The computers with the higher peak flop/s ratings
tend to have lower memory bandwidths, indicating a tendency of some hardware designers to
follow the ARPA design goal of maximum flop/s while ignoring everything else. For a given
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hardware budget, higher peak flop/s ratings might imply lower sustained speed.
Note that the nCUBE 2 exceeds its “peak” gigaflop/s rating. This is because the EP

benchmark counts logarithms, square roots, and multiplications modulo 2    as 25, 12, and 19
operations based on the Cray Hardware Performance Monitor, but the nCUBE 2 has instructions
that permit it to do these things in fewer operations. This brings up another problem with the use
of flop/s as a metric: There is no such thing as a “standard” or “unit” floating-point operation.
This fact has been well articulated by Snelling [4].

Consider the following Fortran program segment, where variables beginning with A-H
and O-Z are 64-bit real numbers, and those beginning with I-N  are integers:

 Y = X ** ABS(Z)
      J = Y + 1
      IF (Z .LT. 0.) W = J
      Z = SIN(W)

In the first line, does an absolute value count as a flop? It means merely zeroing a single bit, so it
seems it shouldn’t get credit for such work. But many architectures use the floating-point adder
functional unit to perform absolute values, which would show it as work on a hardware perfor-
mance monitor. What should the power function “**” count, when both the base and the expo-
nent are real numbers? Should comparisons with zero as in the third line count as flops, even
though they are trivial from the hardware point of view? Of course, the IF  test introduces an
operation count that can only be determined at run time, assuming one counts the integer-to-float
conversion W = J  as a floating-point operation. Estimates for the effort to compute a SIN
range from about 4 flops for computers with very large interpolation tables to 25 flops as mea-
sured by NASA/Ames using a Cray Hardware Performance Monitor. Clearly, flop counts are not
architecture-independent, yet most of the texts on numerical methods assume that they are.

The main reason flop/s metrics are useless is algorithmic: Improving an algorithm often
leads to a lower flop/s rate. Consider a problem that arises in computational chemistry: multi-
plying two 1000 by 1000 matrices that are each about 10% sparse. If one ignores sparsity, the
operation has as its BLAS kernel either an AXPY or a DOT, depending on outer loop nesting:

Method 1:
      DO 1 K = 1,1000
        DO 1 J = 1,1000
          DO 1 I = 1,1000
1           C(I,J) = C(I,J) + A(I,K) * B(K,J)

This operation is “Cray food.” Traditional vector processors effortlessly get over 80% of
peak flop/s ratings on this loop, perhaps with minor restructuring but usually just using the
standard Fortran compilers. Unfortunately, only about 1% of the operations contribute to the
answer if the A and B matrices are 10% sparse. A sparse code to do the same computation, even
without a sparse storage scheme, might save operations via something like this:

Method 2:
      DO 2 K = 1,1000
        DO 2 J = 1,1000
          IF (B(K,J) .NE. 0.) THEN
            DO 1 I = 1,1000
1             IF (A(I,K) .NE. 0.) C(I,J) = C(I,J) + A(I,K) * B(K,J)
          END IF
2     CONTINUE
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As anyone who has used vector computers can attest, the IF  statements in Method 2
might degrade the flop/s rate by an order of magnitude. A typical performance measure might
show Method 1 to run in 1.0 seconds at 2.0 gigaflop/s on a vector computer, but Method 2 to run
in 0.1 seconds at 0.2 gigaflop/s on the same computer. From the hardware viewpoint, Method 1
is ten times faster, but from the user viewpoint, Method 2 is ten times faster. By the prevalent
HPCC esthetic, Method 2 is less “efficient,” farther from its Grand Challenge goal, and thus
should not be used. Yet, it arrives at the answer in an order of magnitude less time. There are
many such examples:

Higher Flop/s Rate Quicker Answers
Conventional Matrix Multiply Strassen Multiplication
Cholesky Decomposition Conjugate Gradient
Time-Domain Filtering FFTs
All-to-All N-Body Methods Greengard Multipole Method
Successive Over relaxation Multigrid
Explicit timestepping Implicit timestepping
Recompute Gaussian integrals Compute Gaussian integrals once, store
Material property computation Table look-up

The methods on the left persist in the repertoire of scientific computing largely because
they keep the front panel lights on, not because they are better methods. There is something
seriously wrong with the notion of “efficiency” that awards a higher score to the slower algo-
rithms in the left column.

A related false goal is that of “speedup.” As commonly defined, speedup is a metric that
rewards slower processors and inefficient compilation [5]. It is especially misleading when
measured on fixed-size problems, since the emphasis on time reduction as the only goal implies
that parallelism in computing has very limited payoff. The main use of parallel computing
hardware is increase in capacity in some performance dimension, not time reduction for prob-
lems we can already solve on a single processor.

Increasing memory does not always increase the merits of a simulation. A poorly-chosen
basis set for quantum chemistry will require more terms and more storage to get the same accu-
racy in an answer than would a better choice of basis functions. We think using increased
memory always means better answers, but this is not the case. We conclude this section with a
table comparing means-based measures with ends-based measures:

Means-Based Ends-Based
Flop/s ratings Time to compute an answer

Bytes of RAM Detail, completeness in answer
Number of Processors Problems that can be attempted

Use of commodity parts Cost and availability of system to end user
Double precision Match to actual physics

ECC memory System reliability
Speedup Product line range

3. A SOLVED GRAND CHALLENGE

In the 1950s and 1960s, the space program was compute-bound. A successful mission
had to be very conservative on fuel, and that meant having fast, accurate course corrections to
control the rockets. For the computers of that era, ordinary differential equations in real time



represented a Grand Challenge.
The USSR, being behind the U.S. in computer technology, initially relied on ground-

based computers for mission control because their equipment was too heavy and too bulky to put
on board. They incurred the difficulty of transmission delays and having to coordinate multiple
transceivers around the globe. The U.S. was able to put most of the computing on board, greatly
increasing the safety margin and fuel economy.

Where is this “Grand Challenge” now? It’s solved, that’s where. Computing is no longer
regarded as an obstacle to space travel. The challenge did not simply move ever further out of
reach. The 1990s Space Shuttle uses the improvements to computing power to manage the
multivariate response to aerodynamic effects in the atmosphere, a more difficult task, but the
response needed is well within the computing power available.

This example shows that Grand Challenges can be specified precisely, and actually can
be “solved.” The goal was to supply enough computer guidance to send hardware into space and
bring it back safely. Can we be so precise about the current Grand Challenges?

4. “UTILITY” AND “ACCEPTABILITY”

William Pardee [3] has suggested something similar to the following method of thinking
about a particular parameter of success: The utility of the answer to a Grand Challenge is a
function of each aspect of its answer, where positive utility means the answer was worth having
and negative utility means the answer is worse than no answer at all (for example, when the
answer is misleading). For example, the utility as a function of “decimals of accuracy in the
answer” might look like the following:

Figure 1. “Utility Curve”

[Note that this is quite different from the amount of precision that might be required in the
computation for typical algorithms. We have grown so accustomed to the use of 64-bit arithmetic
with 14 to 16 decimals of accuracy in the computation that we tend to forget to consider what we
need in the accuracy of the result.]

A somewhat different model is to define “acceptability,” a function bounded by 0 (unac-
ceptable) and 1 (completely acceptable) that is monotone increasing in some parameter, assum-
ing all other parameters are completely acceptable. Such curves might be approximated as
“logistic curves,” which are functions of the form

A(x) = 1 / (1 + e ) (1)

where b is less than zero.
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Figure 2. Typical “Acceptability Curve”

Both the Utility model and the Acceptability model ignore cross terms; for example, a
chemistry application with 100 atoms and only one decimal of accuracy might be acceptable, but
when applied to systems of 3 atoms, only answers accurate to four decimals will be competitive
with research done elsewhere. Where cross terms are easy to recognize, it may be more useful to
plot utility versus some combination of more than one variable (like, accuracy in decimals times
the square root of the number of atoms).

To see why each Grand Challenge community needs to come up with its own set of
Acceptability graphs, consider the differences between various groups of scientists regarding run
times.

Figure 3. Run time Acceptability Variation by Scientific Culture

From personal observation, QCD physicists have an extraordinary tolerance for execution times
that take a significant fraction of a human lifetime; they expect to wait months for a single result.
The upper limit of their patience is simply that for runs of more than a year, computer hardware
improvements permit those problems to be started later and finished sooner. Chemists and most
scientists operate more in the range of several-hour to several-day runs. Weather prediction (not
climate prediction) is clearly limited by the time scale of geophysical events. Outside the Grand
Challenge community, there are computer applications such as text editing where interactions
requiring more than a few seconds are considered intolerable.

If we are to quantify Grand Challenge goals, we have to include not just the measures of
closeness to physical reality, but the practical demands of the entire project. There is a tendency
to sweep such issues as programming effort and system up time “under the rug” when measuring
computing performance. Although they are harder to quantify than operation counts or word
sizes, they can be included in the model.
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5. THE VARIABLES MOST MODELS LEAVE OUT

Performance studies commonly assume that the only figure of merit one need consider is
the reciprocal of the execution time. Putting questions of fixed time versus fixed size scaling for
a moment, there are certainly many other things that matter to the computer user, such as:

• Time to create or convert an effective simulation program on a particular architecture
• Initial cost of the system
• Cost per run, or better, the cost for a complete solution to the Grand Challenge
• Probability that any given run on the computer will fail from reliability problems (hardware

or operating system software)
• Validity of the answer (non-obvious failure modes)
• Time for each edit-compile-run-debug cycle

Compared to these issues, the question of how close we get to 1 teraflop/s seems moot.
All of these variables can be made into specific goals by estimating the Acceptability function
and declaring a value at which we declare the subgoal as “met.” The acceptabilities Ai can be
multiplied to form a Composite Acceptability A =      A  , a bit like taking the “AND” Boolean
operator on all requirements.

The beauty of this approach is that it allows fair comparison of widely varying architec-
tures and algorithms. One is free to change an algorithm to fit a different architecture without
worrying about uncontrolled comparisons.

6. EXAMPLE: GRAPHIC RENDERING

The problem of correctly rendering the appearance of a room defined by the locations,
colors, and reflective properties of its surfaces and lights is a Grand Challenge in the computer
graphics community. What are the requirements of this challenge?

1) It should be able to handle any geometry or reflection property one might find in a typical
building interior.

2) It should take less than one minute to compute.
3) It should cost less than one dollar for each multi-view rendering.
4) The time to make a small alteration to the geometry should be no greater than the time to re-

render the image.
5) A video display of the scene should be indistinguishable from a photograph of a real room

with the same geometry. More precisely, it should be within 5% of true luminosity at a
display resolution of 1024 by 1024 pixels, and should have less than 1% chance of cata
strophic failure from any reason.

6) We want to meet these goals by the year 2000, with the equivalent of two full-time people
working on it.

This list of goals is not the way the graphics community has approached the challenge.
You will not find such a specification in the SIGGRAPH Proceedings or similar literature. Some
researchers keep vague goals similar to these in their head, but the prevailing mode of comparing
rendering methods is to display a picture and show that it “looks realistic.” There is seldom any
mention of the mathematical accuracy, the cost of the system that created the picture, the amount
of time spent computing, or the effort to create the program.

i i
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By expressing these goals, our program at Ames Lab changed its approach to the render-
ing problem. Taking each of these goals in turn:

1) We explicitly restrict ourselves to surfaces expressible by convex planar quadrilaterals with
diffuse surface reflectivity.

2) We allow some runs to last several hours for the sake of prototyping, but otherwise retain this
goal.

3) We retain this goal if one does not figure in the program development cost or the facilities
start-up costs.

4) We retain this goal.
5) We relax this goal by tolerating about a 10% deviation from correct luminosity.
6) We are ahead of schedule.

These compromises can be made more precise using the Acceptability functions of each
goal. One could fit logistic curves to each goal, and then define the product as the net acceptabil-
ity. The Acceptability might be a step function for qualitative requirements like point 1.

Point 5 requires a new formulation of the problem. Normally, diffuse surfaces are treated
using the “radiosity equation”:

b(r) = e(r) + ρ (r) ∫   F(r,r') b(r') dr' (2)

where b is the radiosity (or luminosity) in watts or lumens per meter, r and r' are points on sur-
faces in the scene, e is the emissivity, or light emitted as a source from each point, S is the set of
all surfaces, and F is the “coupling factor” that measures the geometric coupling between points
in the scene. For diffuse surfaces, the equation is exact.

This is discretized to form a system of linear equations, but here is where the more ex-
plicit goal changed our approach: We discretize so as to form a rigorous upper bound and lower
bound on the solution. The coupling factor F attains a maximum and a minimum for any pair of
patches i and j, which are the elements Fij        and Fij      of the discretized system The upper-
bound solution can be initially bounded by the maximum light emissivity e      times the sum of
the geometric series for the maximum reflectivity ρ     :

e      (1 + ρ     + ρ     2 + ρ     3 + …) = e      / (1 – ρ      )      (3)

The lower bound solution can be bounded by zero. Both bounds are independent of
location in the scene. Now we subdivide the geometry, keeping careful track of maxima and
minima in the new discretization. The answer is then improved by Gauss-Seidel iteration without
over relaxation, guaranteeing monotone approach to the correct solution. We alternate the refin-
ing of the subdivision with the iteration of the Gauss-Seidel solver to tighten the bounds on the
answer, producing steady improvement in the quality of the answer with increased computation.
To illustrate this, consider the simple two-dimensional radiosity problem shown in Figure 4.

Figure 4. Simple Radiosity Geometry
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Figure 5 shows how the true, continuous solution to the equation is bounded by the discrete
form, for a coarse discretization. The answer “quality” can now be defined as the reciprocal of
the total area between lower and upper bounds.

Figure 5. Rigorously Bounded Solution

The use of rigorous bounds for the answer to a continuum problem seems to be rare.
Computational scientists tend to use double precision and trust that it represents the true answer
except for the last few decimals of a 15-digit answer. This is seldom a valid approach, since
discretization error dominates most problems. Once we realized there was no point to requiring
10–15 error in the solution with 1% error in the discretization, we were able to make tremendous
improvements to our run times. We are currently running graphics rendering problems that
would take over a thousand times as long using our old paradigm. Stating our goals clearly
caused us to realize that much of our effort was misplaced. A similar approach could well be
used for the federal Grand Challenges.

7. TRANSLATING GC GOALS TO HARDWARE DESIGN GOALS

Hardware designers are faced with an ill-defined problem: How does one allocate hard-
ware costs to maximize performance on a Grand Challenge? The naïve approach of “Make every
component as high performance (which usually means ‘fast’ or ‘large’) as possible” does not
work because cost cannot be ignored. Unfortunately, the “Teraflops” goal has sent the message to
designers that nothing matters but floating point arithmetic speed. Thus, designers are implicitly
guided to provide I/O, memory speed, memory size, ease of use, and MTBF only to the extent
that they effect the nominal flop/s rate. This has had a disastrous effect on the suitability of many
designs for Grand Challenge applications. Every engineering goal must have subgoals; however,
some of our subgoals seem to be the wrong ones in that they lead us farther from, not closer to,
the ultimate goal.

Some specifics: A sustained teraflop/s implies a memory size of roughly 1 teraword (not
terabyte), which at 1994 personal computer SIMM prices costs from $250M to $1000M. The
processors capable of a net theoretical performance of 1 teraflop/s, in contrast, cost under $5M
using currently-available RISC chips. Why, then, is the flop/s performance still regarded as the
design challenge? It is the least of our worries.

Balancing memory bandwidth seems to lead to several pitfalls: belief in caches as a
complete solution, and reliance on benchmarks that involve unrealistic levels of reuse of data
elements (such as matrix multiply). The Level 3 BLAS are characterized by order n   operations
on order n   quantities. Such operations are beloved of marketing departments because they
produce high flop/s numbers for advertising claims, but represent a vanishingly small part of
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Grand Challenge workloads. A better design rule would be to test all computer operations on
order n algorithm constructs. To do n multiplies as a memory-to-memory operations in 64-bit
precision requires moving 24n bytes to or from main memory. Hence, a teraflop/s computer
should have a nominal total memory bandwidth of 24 terabytes/s, a daunting figure in 1994.
Uncached memory bandwidth has a strong correlation with computer hardware cost. There is no
free lunch. In 1994, I estimate the cost of memory bandwidth in a balanced system to be $40 per
megabyte/s. The bandwidth for a “sustained teraflop/s” therefore costs about $100M if scaling is
linear (optimistic scaling, but realistic for distributed memory systems that rely on explicit
message passing).

SUMMARY

We have used the term “Grand Challenge” to organize our HPCC efforts and justify
support for large-scale computational research. The goal of “a sustained teraflop per second” is
the hardware challenge often mentioned in the same breath as “Grand Challenge.” These goals
may not lie in the same direction. To the extent that we let the measure of operations per second
be an end in itself, we are distracted from the real goal of solving physical problems by com-
puter. For some specific examples, the goals may even be in opposite directions; we can achieve
higher nominal flop/s rates only by using less sophisticated algorithms that delay the solution.

If we define all our performance measures in terms of answer goals, these problems
disappear. We can compare parallel computers with vector computers with serial computers
running all different algorithms without questions of “fairness.” With the improved definition,
hardware designers can produce computers better suited to our needs, and we can use the sys-
tems in a way far better suited to solving the Challenges.
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